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Abstract
We prove the exponential decay of eigenfunctions of reductions of Brown–
Ravenhall operators to arbitrary irreducible representations of rotation–
reflection and permutation symmetry groups under the assumption that the
corresponding eigenvalues are below the essential spectrum.
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1. Introduction

The Brown–Ravenhall operator can be considered as the (multiparticle) Dirac operator
projected to the positive spectral subspace of free particles. This operator was introduced
in [1] as a Hamiltonian of quantum electrodynamics (QED) correct to the second order in
the fine structure constant (see also [2]). The higher order corrections predicted by QED
should thus be treated as perturbations. The Brown–Ravenhall model turns out to be a good
candidate for this approach, as the recent rigorous results show. Indeed, it is bounded below
even in the many-particle case for physically relevant nuclear charges [3–5], and the structure
of its spectrum resembles that of the Schrödinger operator—the essential spectrum forms a
semiaxis [6–9], possibly with some eigenvalues below ionization thresholds [6, 9]. This is in
a remarkable contrast to the many-particle Coulomb–Dirac operator which has an essential
spectrum on the whole real axis and no eigenvalues, but is sometimes used as a formal
unperturbed Hamiltonian in some QED calculations.

Having in mind the intention to consider the Brown–Ravenhall operator as an unperturbed
intermediate model, it is very useful to have information on the rate of spatial decay of its
eigenfunctions. In this paper, we prove that for systems of particles with electric charges of
the same sign (we consider the potential energy of interactions with nuclei as an external field)
the eigenfunctions decay exponentially, provided the corresponding eigenvalues are below the
essential spectrum. This will also be proved for restrictions of the operator on subspaces of
wavefunctions with certain rotation–reflection symmetries.

1751-8113/09/475206+16$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/47/475206
mailto:morozov@math.ucl.ac.uk
http://stacks.iop.org/JPhysA/42/475206


J. Phys. A: Math. Theor. 42 (2009) 475206 S Morozov

There are numerous results concerning the exponential decay of eigenfunctions of
multiparticle Schrödinger operators, including anisotropic estimates and lower bounds. A
very detailed analysis of the non-isotropic exponential decay of eigenfunctions of Schrödinger
operators in terms of a metric in configuration space is presented in [10]. It is proved in [11]
that the upper bound of [10] is exact at least for the ground state. A very simple proof of the
exponential decay, based on the approach of [10], can be found in [12], lemma 6.2.

As for relativistic operators, the exponential decay of eigenfunctions is proved for one-
particle Chandrasekhar operators [13, 14] and some projected multiparticle Dirac operators
[15]. For one-particle Brown–Ravenhall atomic Hamiltonians, the exponential decay of
eigenfunctions was first obtained in [16] for coupling constants of the Coulomb potential not
exceeding 1

2 . In the recent preprint [17], the exponential decay of bigger rate is shown to hold
pointwise for all one-electron atoms with subcritical or critical coupling constants.

This paper is organized as follows. In section 2, we introduce the Brown–Ravenhall
model together with some auxiliary constructions and formulate the main result in theorem
2.3. Then in section 3 we discuss the relevant properties of the interaction potentials. The
proof of theorem 2.3 is presented in section 4, with the proofs of technical lemmata postponed
until sections 6–8. In section 5, we prepare these proofs recalling two useful theorems which
give sufficient conditions for the boundedness of integral operators. The appendix contains a
couple of properties of modified Bessel functions for reference.

2. The model and the main result

In the Hilbert space L2(R
3, C

4), the Dirac operator describing a particle of mass m > 0 is
given by

Dm = −iα · ∇ + βm,

where α := (α1, α2, α3) and β are the 4 × 4 Dirac matrices [18]. The form domain of Dm is
the Sobolev space H 1/2(R3, C

4) and its spectrum is (−∞,−m] ∪ [m, +∞). Let �m be the
orthogonal projector onto the positive spectral subspace of Dm:

�m := 1

2
+

−iα · ∇ + βm

2
√−� + m2

.

We consider a finite system of N particles with positive masses mn, n = 1, . . . , N . To simplify
the notation we write Dn and �n for Dmn

and �mn
, and also for their tensor products with the

identity operators in L2(R
3, C

4), e.g.
n−1⊗
j=1

I ⊗ Dmn
⊗ N⊗

k=n+1
I and

n−1⊗
j=1

I ⊗ �mn
⊗ N⊗

k=n+1
I,

respectively.
Let HN := N⊗

n=1
�nL2(R

3, C
4) be the Hilbert space with the inner product induced by that

on
N⊗

n=1
L2(R

3, C
4) ∼= L2(R

3N, C
4N

). In this space, the N-particle Brown–Ravenhall operator

is formally defined by

HN = �N

⎛⎝ N∑
n=1

(Dn + Vn) +
N∑

n<j

Unj

⎞⎠�N, (2.1)

with

�N :=
N∏

n=1

�n = N⊗
n=1

�n.
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Here, the indices n and j indicate the particle on whose coordinates the corresponding operator
acts.

In (2.1) Vn and Unj are the operators of multiplication by the potential energy of interactions
of the particles of the system with an external field and between themselves, respectively. In
most applications to atomic and molecular physics, Brown–Ravenhall operators are considered
in the Born–Oppenheimer approximation. Then Vn is the potential energy of the nth particle
in the electrostatic field of static nuclei

Vn(xn) := en

K∑
k=1

zk

|xn − rk| , (2.2)

where en is the electric charge of the particle, and zk and rk are the charges and positions of
the nuclei. The interaction between the particles is given by the Coulomb potential energy

Unj (xn, xj ) := enej

|xn − xj | . (2.3)

We will assume that all the particles of the system have the same sign of electric charges en,
n = 1, . . . , N , but otherwise they might be different, as happens to exotic atoms, where some
electrons are replaced with muons or even hadrons. The spin of each particle is assumed
to be equal to 1/2, as always with Dirac and Brown–Ravenhall operators. This implies that
the particles of the system are fermions. According to the Pauli principle, if some of the
particles are identical, the wavefunction of the system should be antisymmetric under their
permutations. This means that the operator (2.1) should be restricted to the subspace of HN

consisting of functions which transform according to a certain irreducible representation E of
a subgroup � of the symmetric group SN generated by transpositions of identical particles.
Let PE be the orthogonal projector in HN onto the space of such functions. We will denote the
restriction of HN on HE := P EH by HE

N .
We will assume that the subcriticality condition

min
n,k

enzk > −2(2/π + π/2)−1 (2.4)

holds. According to [4], HN (and thus HE
N ) is bounded below even if we replace the strict

inequality in (2.4) by a non-strict. Violation of such a non-strict inequality usually leads to
the lack of boundedness below, as shown in [3] for the case of single nucleus. As far as HN

(or any of its restrictions) is bounded below, it can be defined via the corresponding quadratic
form.

It is convenient to reduce HE
N using the rotation–reflection symmetries of the system. Let

γ be an orthogonal transform in R
3: the rotation around the axis directed along a unit vector

nγ through an angle ϕγ , possibly combined with the reflection x �→ −x. The corresponding
unitary operator Oγ acts on the functions ψ ∈ HN as (see [18], chapter 2)

(Oγ ψ)(x1, . . . , xN) =
N∏

n=1

e−iϕγ nγ ·Snψ(γ −1x1, . . . , γ
−1xN).

Here Sn = − i
4αn ∧αn is the spin operator acting on the spinor coordinates of the nth particle.

The compact group of orthogonal transformations γ such that Oγ commutes with Vn and Unj

for all n, j = 1, . . . , N (and thus with HE
N ) is denoted by �. Further, we decompose HE

N into
the orthogonal sum

HE
N = ⊕

T ∈Irr �
H

T ,E
N , (2.5)

3
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where H
T ,E
N consists of functions form HE

N which transforms under Oγ according to some
irreducible representation T of �. The decomposition (2.5) reduces HE

N . We denote the self-
adjoint restrictions of HE

N to H
T ,E
N by HT ,E

N . The spectrum of HE
N is the union of the spectra

of H
T ,E
N , T ∈ Irr �.
Together with the whole system of N particles we will consider its decompositions into

two clusters. Such decompositions play an important role in the characterization of the
essential spectrum of the operators H

T ,E
N . Let Z = (Z1, Z2) be a decomposition of the index

set I := {1, . . . , N} into two disjoint subsets:

I = Z1 ∪ Z2, Z1 ∩ Z2 = ∅.

Let

H̃Z,1 :=
∑
n∈Z1

(Dn + Vn) +
∑
n,j∈Z1

n<j

Unj , (2.6)

H̃Z,2 :=
∑
n∈Z2

Dn +
∑
n,j∈Z2

n<j

Unj . (2.7)

We introduce the operators corresponding to noninteracting clusters, with the second cluster
transferred far away from the sources of the external field:

HZ,j := �Z,j H̃Z,j�Z,j , in HZ,j := ⊗
n∈Zj

�nL2(R
3, C

4), j = 1, 2, (2.8)

where

�Z,j :=
∏
n∈Zj

�n = ⊗
n∈Zj

�n.

For a given cluster decomposition Z = (Z1, Z2) we denote by P Ej and P Tj the projectors
onto the irreducible representations Ej and Tj of the restrictions of � and �, respectively, on
the cluster of particles indexed by Zj, j = 1, 2.

Given representations Tj and Ej, projector P Tj P Ej = P Ej P Tj reduces HZ,j . We denote
the reduced operators in

H
Tj ,Ej

Z,j := P Tj P Ej HZ,j

by HTj ,Ej

Z,j and define

�j (Z, Tj , Ej ) := inf SpecHTj ,Ej

Z,j . (2.9)

We write (T1, E1; T2, E2) ≺
Z

(T ,E) if the corresponding term cannot be omitted on the

rhs of

H
T ,E
N ⊂ ⊕

(T1 ,E1)

(T2 ,E2)

(
H

T1,E1
Z,1 ⊗ H

T2,E2
Z,2

)
without violation of the inclusion. For Z2 �= ∅ let

�(Z, T ,E) :=
⎧⎨⎩ inf

(T1,E1;T2,E2)≺
Z
(T ,E)

{�1(Z, T1, E1) + �2(Z, T2, E2)}, Z1 �= ∅,

�2(Z, T ,E), Z1 = ∅,
(2.10)

and

�(T ,E) := min{�(Z, T ,E) : Z = (Z1, Z2), Z2 �= ∅}. (2.11)

4
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We are now ready to characterize the essential spectrum of HT ,E
N in terms of cluster

decompositions.

Theorem 2.1 (Morozov [9], theorem 6). For N ∈ N let T be some irreducible representation
of �, and E some irreducible representation of �, such that P T P E �= 0. The essential
spectrum of HT ,E

N is [�(T ,E),∞).

Thus, the bottom of the essential spectrum is equal to the minimal energy which the
system can have if some of the particles are transferred far away form other particles and
sources of the external field. We will omit the proof of the following simple proposition based
on the positivity of the interaction potentials (2.3).

Proposition 2.2. It is enough to take the minimum in (2.11) over Z with Z2 = {n},
n = 1, . . . , N . Moreover, for such Z, �2(Z, ·, ·) in (2.10) is equal to mn, the mass of the
particle in the second cluster.

As shown in [6], the Brown–Ravenhall operators HT ,E
N can have eigenvalues below the

essential spectrum. Note that in view of the decomposition (2.5) these eigenvalues can be
embedded in the essential spectrum of HE

N .
Our main result is the following theorem.

Theorem 2.3. For N ∈ N let T be some irreducible representation of �, and E some
irreducible representation of �, such that P T P E �= 0. Let φ be an eigenfunction of HT ,E

N

corresponding to an eigenvalue λ below the essential spectrum, i.e.

HT ,E
N φ = λφ, λ < �(T ,E).

Then there exists S > 0 independent of λ and φ such that for

s := min

{
1

2
√

N
, (�(T ,E) − λ)S

}
it holds ∫

R3N

e2s|X||φ(X)|2 dX < ∞. (2.12)

Note that for λ close to the bottom of the essential spectrum s behaves linearly in
(�(T ,E) − λ). However, for Schrödinger [10], Dirac [19], Chandrasekhar [14] and one-
particle Brown–Ravenhall operators [17] s can be chosen to be proportional to the square
root of this distance. This suggests a conjecture that for the multiparticle operators we are
considering the actual rate of decay might have this property as well. But the proof of such
a conjecture is yet obscure even in view of [17], since that result is obtained by comparison
to the decay rate of the eigenfunctions of the Dirac operator, which are nonexistent in the
multiparticle case.

3. Some properties of the model

In this section, we single out some simple properties of the multiparticle Brown–Ravenhall
operators introduced in the previous section. The reason for doing so is twofold. First, it will
allow the reader to see which properties are required in each step of the subsequent proof of the
exponential decay. Second, this will allow us to reformulate the main result without referring
to the explicit form of the potentials (2.2) and (2.3), thus making future generalizations easier.

5
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We need a bit of notation. Let {�j }Nj=1 be a collection of uniformly C1-regular domains

in R
3 with bounded boundaries. For n = 1, . . . , N , s ∈ R, and � = N×

j=1
�j we introduce the

anisotropic Sobolev spaces

Hs
n(�, C

4N

) :=
(

n−1⊗
j=1

L2(�j , C
4)

)
⊗ Hs(�n, C

4) ⊗
(

N⊗
j=n+1

L2(�j , C
4)

)
.

Property 3.1. For any R > 0 there exists a finite CR � 0 such that

N∑
n=1

(∫
|x|�R

|Vn(x)|2 dx
)1/2

+
N∑

n<j

(∫
|x|�R

|Unj (x)|2 dx
)1/2

� CR.

In other words, the interaction potentials are locally square integrable.

Property 3.2. The external field potentials decay at infinity in the L∞-norm:

lim
R→∞

ess sup
|x|>R

|Vn(x)| = 0, n = 1, . . . , N. (3.1)

Property 3.3. For any ε > 0 there exists R > 0 big enough such that for all n < j = 1, . . . , N

‖Unjψ‖L2(R3N∩{|xn−xj |>R}) � ε min
k=n,j

‖ψ‖
H

1/2
k (R3N ,C4N

)
, for all ψ ∈ H 1/2(R3N, C

4N

).

Proof. This follows from the weaker property

lim
R→∞

ess sup
|xn−xj |>R

|Unj (x)| = 0, n, j = 1, . . . , N

of the potentials (2.3). �

Property 3.4. The interparticle interaction potentials are nonnegative:

Unj � 0, for all n < j = 1, . . . , N. (3.2)

This follows from the assumption that all the particles of the system have electric charges
of the same sign.

Property 3.5. There exists C > 0 such that for any n = 1, . . . , N

|〈Vnϕ,ψ〉| � C‖ϕ‖
H

1/2
n

‖ψ‖
H

1/2
n

, for any ϕ,ψ ∈ H 1/2
n (R3N, C

4N

), (3.3)

and for any n < j = 1, . . . , N

|〈Unjϕ,ψ〉| � C‖ϕ‖H 1/2‖ψ‖H 1/2 , for any ϕ,ψ ∈ H 1/2(R3N, C
4N

). (3.4)

Proof. Inequalities (3.3) and (3.4) follow from Kato’s inequality (see [20] and [21],
theorem 2.9a). �

Property 3.6. There exists C > 0 such that for any n = 1, . . . , N and any ψ ∈ H 1(R3N, C
4N

)

‖Unjψ‖ � C min
k=n,j

‖ψ‖
H 1

k (R3N ,C4N
)
. (3.5)

It is not surprising to have the minimum on the rhs of (3.5), since Unj only depends on the
difference xn − xj . Note that (3.5) can be applied even if ψ is only known to belong either to
H 1

n (R3N, C
4N

) or to H 1
j (R3N, C

4N

).

6
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Proof. Inequality (3.5) follows from Hardy’s inequality (see e.g. [22], p. 55) and the properties
of symmetric-decreasing rearrangements (see e.g. [23], lemma 7.17 and relation (3.3.4)). �

Property 3.7. There exist C1 > 0 and C2 ∈ R such that for any cluster decomposition Z

〈HZ,jψ,ψ〉 � C1

〈∑
n∈Zj

Dnψ,ψ

〉
− C2‖ψ‖2,

for any ψ ∈ ⊗
n∈Zj

�nH
1/2(R3, C

4), j = 1, 2. (3.6)

Proof. This is where we need the subcriticality condition (2.4). According to the result of
[4], inequality (2.4) implies (3.6) if N = 1. For N > 1 it is enough to use property 3.4 to
estimate HZ,j from below by a direct sum of one-particle operators. �

Remark 3.8. By properties 3.5 and 3.7, the quadratic forms of operators (2.8) (and, in
particular, HN ) are bounded below and closed on ⊗

n∈Zj

�nH
1/2(R3, C

4). Thus, these operators

are well defined in the form sense, and so are their restrictions to invariant subspaces.

Remark 3.9. Suppose that the potentials (2.2) and (2.3) are replaced by operators of
multiplication by some measurable Hermitian matrix-valued functions such that Vn are the
operators of multiplication of spinor coordinates of the nth particle by 4 × 4 matrix-valued
functions Vn(xn), n = 1, . . . , N , and Unj are the operators of multiplication of spinor
coordinates of nth and j th particles by 16 × 16 matrix-valued functions Unj (xn − xj ),
n < j = 1, . . . , N . Then the statements of theorems 2.1 and 2.3 remain valid, provided
properties 3.1–3.7 hold. Indeed, properties 3.1–3.7 imply assumptions 1–5 of [9], which form
the hypothesis of theorem 6 of [9]. And in the proof of theorem 2.3, we will not need the
explicit expressions (2.2) and (2.3), but only the properties listed in this section.

4. Proof of theorem 2.3

Some constants in the proof can depend on the masses of the particles. Since we only deal
with a finite number of particles with positive masses, such dependence will not be indicated
explicitly.

Lemma 4.1. Suppose that for some a > 0∫
R3N

e2a|xn||φ(X)|2 dX < ∞, n = 1, . . . , N. (4.1)

Then (2.12) holds with s = N−1/2a.

Proof.

e2s|X| � e
2
√

Ns max
n=1,...,N

|xn| �
N∑

n=1

e2
√

Ns|xn| =
N∑

n=1

e2a|xn|.

Thus, (4.1) implies (2.12) after summation in n. �

It remains to prove that (4.1) holds with some suitable a > 0. Without loss of generality
we will consider the case n = 1.

7
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Let ρ ∈ C2([0,∞), [0,∞)) be given by

ρ(z) :=

⎧⎪⎪⎨⎪⎪⎩
z2 − z3

3
, z ∈ [0, 1),

z − 1

3
, z ∈ [1,∞).

(4.2)

For ε > 0 let

f (X) := f (x1) := ρ(|x1|)
1 + ερ(|x1|) . (4.3)

Note that for any ε > 0

‖∇f ‖L∞ < 1. (4.4)

Since φ ∈ L2(R
3N, C

4N

), for n = 1 (4.1) is equivalent to

‖eaf φ‖
L2(R3N ,C4N

)
� C (4.5)

with C being independent of ε. Note that for any ε > 0 the function eaf is twice differentiable
with bounded derivatives. Hence multiplication by eaf is a bounded operator in the Sobolev
spaces Hs(R3, C

4) with s ∈ [0, 2].
The following two lemmata will be important in the subsequent proof.

Lemma 4.2. For any a0 ∈ [0, 1) there exists C(a0) > 0 such that for any a ∈ [0, a0] and
ψ ∈ L2(R

3, C
4)

‖[�1, eaf ]ψ‖H 1(R3,C4) � C(a0)a‖eaf ψ‖ (4.6)

and

‖e−af [�1, eaf ]ψ‖H 1(R3,C4) � C(a0)a‖ψ‖. (4.7)

Lemma 4.2 is proved in section 6. Some analogous estimates with L2-norms instead of
H1-norms can be found in [16].

Corollary 4.3. For any a0 ∈ [0, 1) there exists C(a0) > 0 such that for any a ∈ [0, a0] and
ψ ∈ L2(R

3, C
4)

‖e−af �1eaf ψ‖ � C(a0)‖ψ‖. (4.8)

Proof.

e−af �1eaf = �1 + e−af [�1, eaf ],

and (4.7) implies (4.8). �

Lemma 4.4. Let BR be the ball of radius R > 0 in R
3 centred at the origin. For any

a ∈ [0, 1/2) there exist C(R) > 0 and C(a,R) > 0 such that for any ψ ∈ H 1/2(R3, C
4)

‖�1ψ‖H 1/2(BR,C4) � C(R)‖ψ‖H 1/2(B3R,C4) + C(a,R)‖e−2af ψ‖L2(R3,C4). (4.9)

We prove lemma 4.4 in section 7.
In order to be able to apply lemma 4.4 we will only consider a ∈ [0, 1/2). We can thus fix

a0 ∈ [1/2, 1) and no longer trace the dependence of the constants in lemma 4.2 and corollary
4.3 on this parameter.

Let us fix a cluster decomposition

Z0 := ({2, . . . , N}, {1}). (4.10)

8
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Then

�1eaf φ = P T P E�1eaf φ =
∑

(T1,E1;T2,1)≺
Z0

(T ,E)

(P T1P E1 ⊗ P T2)�1eaf φ. (4.11)

The eigenfunction φ belongs to the form domain of HT ,E
N , which is

P T P E
N⊗

n=1
�nH

1/2(R3, C
4) ⊂ H 1/2(R3N, C

4N

).

Hence by (4.11), (2.9), (2.10) and (2.11)

〈�1eaf φ, (HZ0,1 + HZ0,2)�1eaf φ〉

�
〈
�1eaf φ,

∑
(T1,E1;T2,1)≺

Z0
(T ,E)

(�1(Z0, T1, E1) + �2(Z0, T2, 1))(P T1P E1 ⊗ P T2)�1eaf φ

〉

� �(T ,E)‖�1eaf φ‖2. (4.12)

Let us introduce

Q1 := �(T ,E)〈eaf φ, [eaf ,�1]φ〉, (4.13)

Q2 :=
〈
�1eaf φ,

⎛⎝ N∑
n=2

(Dn + Vn) +
N∑

1<n<j

Unj + D1

⎞⎠ [�1, eaf ]φ

〉
, (4.14)

Q3 := 〈�1eaf φ, [D1, eaf ]φ〉, (4.15)

Q4 := −
〈
�1eaf �1eaf φ,

⎛⎝V1 +
N∑

j=2

U1j

⎞⎠φ

〉
. (4.16)

Then by (4.12) (recall the definitions (2.6)–(2.8) and (2.1))

�(T ,E)‖eaf φ‖2 = 〈�1eaf φ, �(T ,E)�1eaf φ〉 + Q1

� 〈�1eaf φ, (HZ0,1 + HZ0,2)�1eaf φ〉 + Q1

=
〈
�1eaf φ,

⎛⎝ N∑
n=2

(Dn + Vn) +
N∑

1<n<j

Unj + D1

⎞⎠ eaf φ

〉
+ Q1 + Q2

=
〈
�1eaf φ, eaf

⎛⎝ N∑
n=2

(Dn + Vn) +
N∑

1<n<j

Unj + D1

⎞⎠φ

〉
+

3∑
l=1

Ql

= 〈
�1eaf φ, eafHT ,E

N φ
〉
+

4∑
l=1

Ql = λ‖�1eaf φ‖2 +
4∑

l=1

Ql

� λ‖eaf φ‖2 +
4∑

l=1

Ql. (4.17)

Thus

(�(T ,E) − λ)‖eaf φ‖2 �
4∑

l=1

Ql, (4.18)

and it remains to estimate Q1, . . . ,Q4. This will be done in the following four lemmata.
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Lemma 4.5. There exists a positive constant C1 such that

|Q1| � C1a‖eaf φ‖2. (4.19)

Proof. By (4.13) and lemma 4.2 we have

|Q1| � |�(T ,E)|‖eaf φ‖‖[eaf ,�1]φ‖ � Ca|�(T ,E)|‖eaf φ‖2. �

Lemma 4.6. There exists a positive constant C2 such that

|Q2| � C2a‖eaf φ‖2. (4.20)

Proof. Since �1 commutes with
∑N

n=2(Dn + Vn) +
∑N

1<n<j Unj , φ = �1φ and
�1[�1, eaf ]�1 = 0, we have〈

�1eaf φ,

⎛⎝ N∑
n=2

(Dn + Vn) +
N∑

1<n<j

Unj

⎞⎠ [�1, eaf ]φ

〉
= 0. (4.21)

According to lemma 4.2

|〈�1eaf φ,D1[�1, eaf ]φ〉| � ‖�1eaf φ‖‖|D1|[�1, eaf ]φ‖ � Ca‖eaf φ‖2.

By (4.14) and (4.21) this implies (4.20). �

Lemma 4.7. There exists a positive constant C3 such that

|Q3| � C3a‖eaf φ‖2. (4.22)

Proof. We have [D1, eaf ] = [−iα · ∇, eaf ] = −iα · (∇eaf ) = −iα · a(∇f )eaf . Now (4.22)
follows from (4.15) and (4.4). �

Lemma 4.8. There exist C4 > 0 and C0(a) > 0 such that

Q4 � C4a‖eaf φ‖2 + C0(a)‖φ‖2
H 1/2 . (4.23)

We give a proof of lemma 4.8 in section 8.
Substituting the estimates (4.19), (4.20), (4.22) and (4.23) into (4.18), we conclude that(

�(T ,E) − λ − a

4∑
l=1

Cl

)
‖eaf φ‖2 � C0(a)‖φ‖2

H 1/2 . (4.24)

Now if

a < min

⎧⎨⎩1

2
,

(
4∑

l=1

Cl

)−1

(�(T ,E) − λ)

⎫⎬⎭ ,

then the expression in brackets on the lhs of (4.24) is positive, and (4.24) implies (4.5) with a
finite C independent of ε. Theorem 2.3 is proved.
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5. Boundedness of integral operators

In this section, we collect some auxiliary material for the subsequent proofs of lemmata 4.2,
4.4 and 4.8. In order to be able to obtain the information on the boundedness of (singular)
integral operators, we will need the following two theorems.

Theorem 5.1. (Stein [24], chapter 2, section 3.2) Let K : R
n → C be a measurable function

such that for some B > 0

|K(x)| � B|x|−n, |∇K(x)| � B|x|−n−1, for almost every x ∈ R
n

and ∫
R1<|x|<R2

K(x)dnx = 0, for all 0 < R1 < R2 < ∞.

For g ∈ Lp(Rn), 1 < p < ∞, let

Aε(g)(x) :=
∫

|x−y|�ε

K(x − y)g(y)dny, ε > 0.

Then

‖Aε(g)‖p � Bp‖g‖p (5.1)

with Bp being independent of g and ε.

Remark 5.2. Inequality (5.1) shows that the operator A := lim
ε→+0

Aε exists as a bounded

operator in Lp(Rn) and its norm satisfies ‖A‖p � Bp.

The second theorem is known as Schur’s test.

Theorem 5.3. Let (�1, μ1) and (�2, μ2) be two spaces with measures. Let A(·, ·) be a
measurable (matrix) function on �1 × �2 satisfying

M1 := sup
y∈�2

∫
�1

|A(x, y)|dμ1(x) < ∞, M2 := sup
x∈�1

∫
�2

|A(x, y)|dμ2(y) < ∞.

Then the integral operator

(Aψ)(x) :=
∫

�2

A(x, y)ψ(y)dμ2(y)

is bounded from L2(�2) to L2(�1) and ‖A‖ �
√

M1M2.

We will only use theorem 5.3 in the case �1 = �2 = R
3 with Lebesgue measure.

Note that in the case of convolution (i.e. for A(x, y) = A(x − y), �1 = �2 = R
d ),

theorem 5.3 reduces to Young’s inequality for convolution with L1-function (see e.g. [25]).
For a 4×4 measurable matrix function A on R

3 ×R
3 we define the corresponding integral

operator by

(Ag)(x) := lim
ε→+0

∫
|x−y|>ε

A(x, y)g(y)dy, g ∈ C1
0(R

3, C
4). (5.2)

We will only work with such A for which (5.2) is well defined and extends to a bounded
operator in L2(R

3, C
4) either by theorem 5.1 (in which case A(x, y) has to depend only on

(x − y)) or by theorem 5.3.

11
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In particular, according to the definition given above and appendix B of [6], the integral
kernel of (�m − 1/2) is

K(x, y) = K(x − y) := im

2π2

α · (x − y)

|x − y|3 K1(m|x − y|)

+
m2

4π2

(
β

K1(m|x − y|)
|x − y| +

iα · (x − y)

|x − y|2 K0(m|x − y|)
)

. (5.3)

The boundedness follows from theorem 5.1 and (A.2).
Note that the function (5.3) rapidly decays together with its derivatives if |x − y| becomes

big. Namely, if for r > 0 we define

G(r) := sup
|x−y|>r

|K(x, y)| + sup
|x−y|>r

|∇xK(x, y)|, (5.4)

then by (A.2) and the first asymptotic in (A.1), for any R > 0 there exists C(R) > 0 such that

G(r) � C(R)r−3/2e−r , for all r � R. (5.5)

We will also use the following elementary lemma (lemma 10 of [9]).

Lemma 5.4. For any d, k ∈ N there exists C > 0 such that for any bounded differentiable
function χ on R

d with bounded gradient and u ∈ H 1/2(Rd , C
k)

‖χu‖H 1/2(Rd ,Ck) � C(‖χ‖L∞(Rd ) + ‖∇χ‖L∞(Rd ))‖u‖H 1/2(Rd ,Ck).

6. Proof of lemma 4.2

To prove (4.6) it is enough to show that [�1, eaf ]e−af is a bounded operator from L2(R
3, C

4)

to H 1(R3, C
4) satisfying

‖[�1, eaf ]e−af ‖L2(R3,C4)→H 1(R3,C4) � C(a0)a, a ∈ [0, 1). (6.1)

The integral kernel of [�1, eaf ]e−af = [
(�1 − 1/2), eaf ]e−af is given by (see (5.3))

([�1, eaf ]e−af )(x, y) = K(x, y)(1 − ea(f (x)−f (y))), (6.2)

and its gradient in x is

(∇[�1, eaf ]e−af )(x, y) = (∇xK)(x, y)(1 − ea(f (x)−f (y)))

+ aK(x, y)(1 − ea(f (x)−f (y)))(∇f )(x) − aK(x, y)(∇f )(x). (6.3)

We rewrite

1 − ea(f (x)−f (y)) = −a(∇f )(y) · (x − y) + R1(x, y) + R2(x, y), (6.4)

where

R1(x, y) := 1 + a(f (x) − f (y)) − ea(f (x)−f (y))

and

R2(x, y) := a((∇f )(y) · (x − y) + f (y) − f (x)).

Since

|ez − 1 − z| � (e − 2)z2 for |z| � 1,

by (4.4) we have

|R1(x, y)| � (e − 2)a2(f (x) − f (y))2 � (e − 2)a2|x − y|2, for |x − y| � a− 1
2 . (6.5)

12



J. Phys. A: Math. Theor. 42 (2009) 475206 S Morozov

On the other hand, since a < a0 < 1, for |x − y| > a− 1
2 the functions

|K(x, y)R1(x, y)| and |∇xK(x, y)R1(x, y)|
are integrable in x or y with the integrals bounded by C(a0)a, as follows from (5.4), (5.5) and
(4.4). Since f ∈ C2(R3), by the Taylor formula we have

f (x) − f (y) = (∇f )(y) · (x − y) + 〈(Df )(ξx + (1 − ξ)y)(x − y), (x − y)〉R3 ,

where Df is the Hessian matrix (i.e. the matrix of the second partial derivatives of f ) and
ξ ∈ [0, 1]. Hence

|R2(x, y)| = a|〈(Df )(ξx + (1 − ξ)y)(x − y), (x − y)〉R3 | � a‖Df ‖L∞|x − y|2, (6.6)

where ‖Df ‖L∞ is bounded uniformly in ε by (4.3) and (4.2). Substituting (6.4) into (6.2)
and (6.3), and using the estimates (6.5)–(6.6) we obtain (6.1) by theorems 5.1 and 5.3. This
completes the proof of (4.6).

The proof of (4.7) is completely analogous since the integral kernel of

e−af [�1, eaf ] = e−af [(�1 − 1/2), eaf ]

is

K(x, y)(ea(f (y)−f (x)) − 1)

(compare with (6.2)).

7. Proof of lemma 4.4

Let η ∈ C∞(R3, [0, 1]) with

η(x) ≡
{

0, x ∈ B2R,

1, x ∈ R
3 \ B3R.

Since �1 is a bounded operator in H 1/2(R3, C
4), by lemma 5.4 we have

‖�1ψ‖H 1/2(BR,C4) � ‖�1(1 − η)ψ‖H 1/2(BR,C4) + ‖�1ηψ‖H 1/2(BR,C4)

� C(R)‖ψ‖H 1/2(B3R,C4) + ‖�1ηψ‖H 1(BR,C4). (7.1)

By (5.4) we can estimate the second term on the rhs of (7.1) as

‖�1ηψ‖2
H 1(BR,C4)

=
∫
BR

(∣∣∣∣∫|y|>2R

K(x, y)η(y)ψ(y)dy

∣∣∣∣2 +

∣∣∣∣∫|y|>2R

∇xK(x, y)η(y)ψ(y)dy

∣∣∣∣2
)

dx

� 4

3
πR3 sup

x∈BR

(∣∣∣∣∫|y|>2R

K(x, y)η(y)ψ(y)dy

∣∣∣∣2 +

∣∣∣∣∫|y|>2R

∇xK(x, y)η(y)ψ(y)dy

∣∣∣∣2
)

� 4

3
πR3

(∫
|y|>2R

(
sup
x∈BR

|K(x, y)| + sup
x∈BR

|∇xK(x, y)|
)

|ψ(y)|dy
)2

� 4

3
πR3

(∫
|y|>2R

G(|y| − R)|ψ(y)|dy
)2

� 4

3
πR3

(∫
|y|>2R

G1−2a(|y| − R)dy
)(∫

|y|>2R

G1+2a(|y| − R)|ψ(y)|2dy
)

.

Since a < 1/2 and f (x) � |x|, we conclude from (5.5) that there exists C(a, R) such that

‖�1ηψ‖H 1(BR,C4) � C(a,R)‖e−2af ψ‖L2(R3,C4),

and (4.9) follows by (7.1).
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8. Proof of lemma 4.8

For j = 2, . . . , N we have

〈�1eaf �1eaf φ,U1jφ〉 = 〈U1j eaf φ, eaf φ〉
+ 〈U1j e−af [�1, eaf ]�1eaf φ, eaf φ〉 + 〈U1j [�1, eaf ]φ, eaf φ〉. (8.1)

The first term on the rhs of (8.1) is nonnegative by (3.2). Applying (3.5), lemma 4.2 and
Schwarz inequality we can estimate the last two terms by Ca‖eaf φ‖2. Hence by (4.16)

Q4 � Ca‖eaf φ‖2 + |〈�1eaf �1eaf φ, V1φ〉| (8.2)

and it remains to estimate the last term on the rhs of (8.2).
Let χ1 ∈ C∞(R3, [0, 1]) be a function supported in R

3\B1 such that it is equal to 1 on
R

3\B2. For R > 1 let

χR(X) := χR(x1) := χ1(x1/R).

We have

|〈�1eaf �1eaf φ, V1φ〉| � |〈e−af �1eaf �1eaf φ, χRV1eaf φ〉|
+ |〈(1 − χR)�1eaf �1eaf φ, V1φ〉|. (8.3)

By corollary 4.3,

‖e−af �1eaf �1eaf φ‖ � C‖eaf φ‖. (8.4)

Since χR is supported outside BR, by (3.1) we have

‖χRV1eaf φ‖ � ε(R)‖eaf φ‖, ε(R) −→
R→∞

0. (8.5)

According to (3.3),

|〈(1 − χR)�1eaf �1eaf φ, V1φ〉| � C‖(1 − χR)�1eaf �1eaf φ‖
H

1/2
1

‖φ‖
H

1/2
1

. (8.6)

Since (1 − χR) is a smooth function supported in
{|x1| � 2R

}
, by lemmata 5.4 and 4.4 we

have

‖(1 − χR)�1eaf �1eaf φ‖
H

1/2
1

� C(R)‖�1eaf �1eaf φ‖
H

1/2
1 (B2R×R3N−3,C4N

)

� C(R)‖eaf �1eaf φ‖
H

1/2
1 (B6R×R3N−3,C4N

)
+ C(a,R)‖e−af �1eaf φ‖

L2(R3N ,C4N
)
. (8.7)

By corollary 4.3 the second term on the rhs of (8.7) can be estimated by C(a,R)‖φ‖. Applying
lemma 4.4 to the first term we obtain

C(R)‖eaf �1eaf φ‖
H

1/2
1 (B6R×R3N−3,C4N

)

� C(a,R)‖�1eaf φ‖
H

1/2
1 (B6R×R3N−3,C4N

)

� C(a,R)‖eaf φ‖
H

1/2
1 (B18R×R3N−3,C4N

)
+ C(a,R)‖e−af φ‖

L2(R3N ,C4N
)

� C(a,R)‖φ‖
H 1/2(R3N ,C4N

)
. (8.8)

Thus by (8.6)–(8.8)

|〈(1 − χR)�1eaf �1eaf φ, V1φ〉| � C(a,R)‖φ‖2
H 1/2 . (8.9)

Estimating the rhs of (8.3) according to (8.4), (8.5) and (8.9) and substituting the result into
(8.2) we obtain

Q4 � Ca‖eaf φ‖2 + Cε(R)‖eaf φ‖2 + C(a,R)‖φ‖2
H 1/2 .

Choosing R so that ε(R) � a we arrive at (4.23). Lemma 4.8 is proved.
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Appendix A. Some properties of modified Bessel functions

The modified Bessel (McDonald) functions are related to the Hankel functions by the formula

Kν(z) = π

2
eiπ(ν+1)/2H(1)

ν (iz).

These functions are positive and decreasing for z ∈ (0,∞). Their asymptotics are (see [26]
8.446, 8.447.3, 8.451.6)

Kν(z) =
√

π

2z
e−z

(
1 + O

(
1

z

))
, z → +∞;

K0(z) = − log z(1 + o(1)), K1(z) = 1

z
(1 + o(1)), z → +0. (A.1)

The derivatives of these functions are (see [26] 8.486.12, 8.486.18)

K ′
0(z) = −K1(z), K ′

1(z) = −K0(z) − 1

z
K1(z), z ∈ (0,∞). (A.2)
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